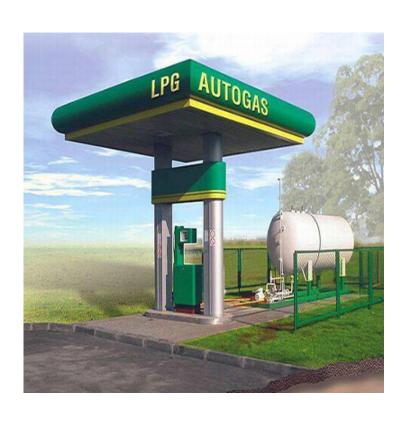
Risk analysis basics according to BOVEN

- There is no such thing as no risk
- Measuring risks is difficult
- Sound Dutch policy basis is individual risk however
- We have to define reasonable computational rules
- If the risk is uncertain, we have to guestimate
- Precaution is risky in itself
- Application: The BOVEN risk mixing console compares old fossil risks with new ET risks
- Workshop means that you will be asked to help define reasonable risk policies for some examples

BOVEN introduced

- BOVEN is a group of decentral politicians: mayors, aldermen and provincial executives: politicians for a safe energy transition
- BOVEN helps to combine the responsibility for a safe energy transition with the societal need to realise the energy transition
- Members of BOVEN bear every day the responsibility for permitting energy transition initiatives.
- The ministry of Economic Affairs and Climate is a partner in BOVEN.
- Several guidelines have been published up to now. Two today!

When risk policy derails ...



the ET will be unnecessary delayed ...

There is no such thing as no risk

Disclaimer: all statements in this presentation are statistical statements. So there always are exceptions!

- All activities cause risks
- No activity is a risk in itself: the 'healthy worker' effect means that those working live a decade longer in terms of healthy life years that those without jobs.
- Safety measures are a risk in itself: every 15 million spend on safety measures cost a statistical life.

Measuring risks is difficult

 Classically risk analysts talk about risk as a composition of probability and effect so

$$R = P * E$$

• But how to compute P or E in a ever more society or for new risks?

The sound Dutch basis (1)

- Since 1989 'Dealing with risk' Dutch risk policies have, more or less, be directed by a norm on the individual risk of dying (IR).
- General rule
 - IR for a risk category is accepted when the IR is smaller than 1 in the 100.000 year. Usually denoted as IR < 10^{-5}
 - IR for a subrisk is accepted when IR $< 10^{-6}$.
- Examples: flooding, construction safety, exposure to asbestos.
- The two problematic examples already deviate form the basis at this point: food additives are judged by 'no observed effect' so zero risk. The recommendations for batteries are based on 'let's make is more safe'

The sound Dutch basis (2)

- Dying is but one of the risks you face in life •.
- The WHO therefore introduced the Disability Adjusted Life Year (DALY) as a measure of health effects.
- Dutch advisory boards have advised to maximize the reasonable investment in preventing a loss of a DALY at 80.000 euro's. There just is so much many available ...
- This allows for (not so popular) cross risk domain prioritising of safety investments
- It's considered political tricky to say this aloud.
- Examples: medicines (but ...), vaccines (but ...), number of fire trucks at airports.

Reasonable computational rules

- Striving to be on the safe side of things causes problems
- All important technical rule: use the expected value (average)

Now the risk is uncertain

- For a new risk there is no statistical basis to compute the risk. Help!
- Rule of thumb '9 out of 10' new risks are actually not that new, i.e. there is a reasonable analogue somewhere out there (often in nature)
- When the risk is really new ... permitting is impossible ... only step by step piloting and monitoring is a way forward.

How about the precautionary principle

- There are many forms of the precautionary principle. Let's take this one: 'the absence of proof of a negative effect is no argument for not taking sound safety measures.'
- For the ET: not acting is allowing people to continue to die from fossil risks like air pollution.
- Example: afraid of batteries at home? Every year 5 people die from COintoxication...

Let's dicuss

- Does this presentation give you useful insights?
- How can we use these insights to mend the examples of problematic risk policies?
- And more general: what elements can you use in deciding/advising about the ET?

The risk mixing console

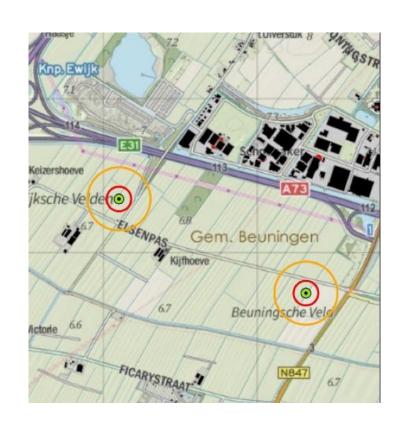
- BOVEN developed the risk mixing console as an instrument for informing local authorities on the risks of the ET they permit.
- Clearly, using the reasonable risk calculation rules.
- You have to fill in the new energy form you want to consider: solar, wind, biomass, H₂ for heating or geothermic.
- The scale you want to focus on: local (+ number inhabitants), regional (+number of inhabitants), national or worldwide.
- Optional: chose a risk mitigation measure for comparison. For example sound isolation or the construction of a roundabout.

What do you get?

- A comparison of the gain or loss of 'healthy life years'. More precise the delta in terms of Disabilty Adjusted Life Years
- Lets look at the example of wind turbines. It is the delta between energy production using fossils causing air pollution and energy production using wind turbines causing noise and a very small extra risk of falling blades:
 - You loose DALY's because of sound and falling blades
 - You win DALY's because of less air pollution.
- So note that occupational health effects are not part of the risk mixing console.

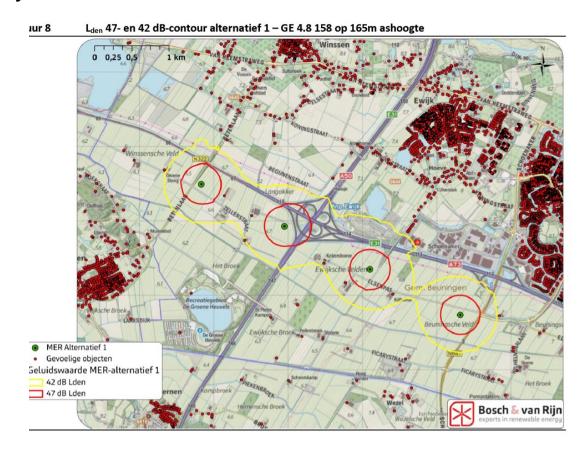
• New wind turbines in the municipality of Beuningen.

MER-alternatieven van Windpark Beuningen.

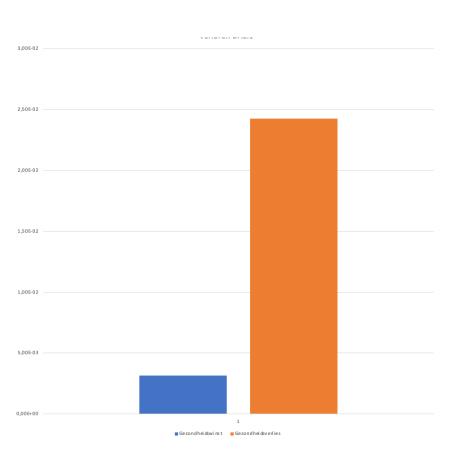

- We consider the two new wind turbines of 4,8 MW each in the red circle.
- Beuningen has 26,000 inhabitants and is part of the Gelderland with 2 million inhabitants

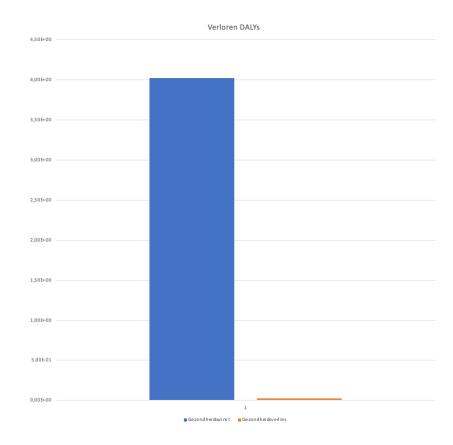
The input parameters

Question: Number of people within the 10⁻⁶ safety contour?
Answer: 0


 Question: number of people passing along roads within the 10⁻⁶ safety contour?
Answer: 1 per minute for both turbines, so 2,880 per day

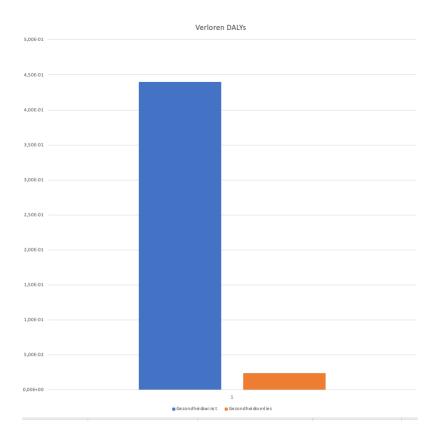
The input parameters


Question: how many people live within the 45-47 dB contour, the 40-44 dB contour and the35-39 dB contour?
Answer: 2, 20 en 100 respectively



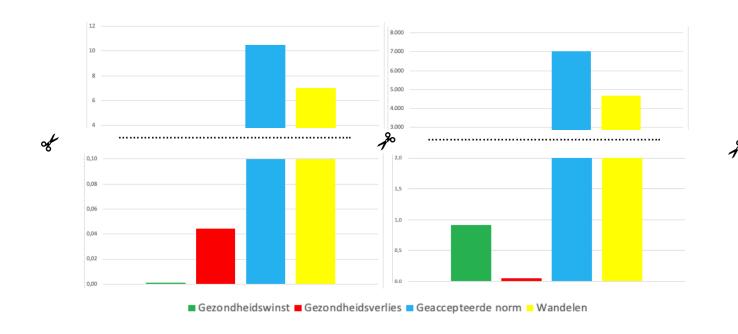
The perspective we are interested in

The scale ... we present local and worldwide



A possible comparison

 Constructing a roundabout for 2 cars per minute: gain of roundabout versus local loss wind turbine


DALY gain p.y. 0.5

DALY loss p.y. 0.02

An another one

 Again local and Mondial, but now versus Dutch 10⁻⁵ norm and walking on the street

All feedback is welcome: i.helsloot@crisislab.nl

This presentation (and the risk mixing console) can be found at www.werkgroep-boven.nl.